全文小结:
天文望远镜软件哪个好
常见的天文软件有以下几种,我个人同时使用Stellarium_0.10.6和万维天文望远镜。
【Skymap】
【Stellarium_0.10.6】我现在用这个,比较实用!!推荐。
;pn=0.html汉化内置
【“万维天文望远埋丛灶镜”】(WorldWide telescope, WWT。由微软公司研发)
特点:界面华丽,内容信息也很多;但实用性相对不如Stellarium(也可能是我对它还不熟的原因)汉化内置。可参见百科词条:万维天文望远镜。
WWT官网:下载弯扮地址(郑键点击右上角绿色向下箭头即可下载
【Google Earth】谷歌地球:上面也有月球 火星及星空的模块。
【Celestia 】
【Asynx Planetarium 】
以上软件可在网上直接下载,百度一下你就知道
望远镜之父是谁
1608年,一个荷兰眼镜制造商利普赫(Hans Lippershey)发明了第一架小望远镜。次年,伽利略用自制的望远镜第一次观测星球,从此人类踏上了探索宇宙的新征程。400年来,凝聚了人类雄心勃勃的追求与智慧,望远镜从小口径到大口径,从光学望远镜到全电磁波段望远镜,从地面望远镜到空间望远镜,以及全电磁波段接收机与探测器的进步,不仅使天文学发生了革命,而且深刻地影响了其它科学的发展,乃至整个人类社会的进步,改变了人类的宇宙观!
“天外有天”
在伽利略之前,沉迷于夜空世界的天文学者只能用他们的肉眼来观察天空。伽利略自制的望远镜所放大的倍率在今天看来小得可怜,但在人类科学史上却引发了一场革命。从那以后,望远镜口径的每一次增大,都导致我们认识宇宙眼界的扩展。
人类对天空的关注同文明的历史一样久远。为了知道日期,季节,何时播种,何时过冬,人们总是仰望苍穹,从闪闪的星空寻找答案。为了便利地观测天象,古代天文学家修建了观象台,借助各种记录天体方位的仪器,记下了他们所看到的日月星辰的位置、运动以及日食、彗星,新星等特殊天象。
观测天象不仅有实用的目的,更重要的是星空从来都是人类好奇心和想象力的源泉。
1608年,荷兰人里帕席发明了一种奇妙的“光管”能够把远处物体放大,并为此申请了专利。
1609年,意宽基大利物理学家伽利略听说此事后,经过研究独立制成一架口径4.4厘米,长1.2米,放大率32倍的望远镜。当他把望远镜指向天空时,很快就发现银河原来由数不清的星星组成,月亮并不是亚里士多德所说的那样完美,而是有山有谷,木星有4个围绕着它运转的卫星,而不是地心说主张的那样,所有天体都围绕地球运行。
望远镜的威力来源于它收集光线的面积远远超过人眼的瞳孔,望远镜口径越大,看得就越远,也越清楚。这就是后来望远镜越做越大的原因。
借助望远镜,荷兰人惠更斯发现了土星的最大卫星,而且他正确地观测到土星的光环是与土星分开的;法国天文学家卡西尼在1675年发现并确认了土星光环中有个缝,这个环缝在今天以他的名字命名为卡西尼环缝。
英国科学家牛顿使天文学发生了一场革命,他发现了万有引力定律和光的色散,发明了镜筒短、无色差、后来成为主流的反射式望远镜。100年以后,威廉·赫歇尔用自制的望远镜发现了天王星,他还建成了当时世界上最大的反射望远镜,首次通过观测证实了银河圆巧局系的恒星呈扁平状分布。
后来在爱尔兰,罗斯伯爵三世又建了一个更大的望远镜,1845年它被建在比尔城堡的两面石墙之间,正是这架望远镜发现了第一个不是模糊一团,而是有结构的星云。
19世纪中叶以后,随着科学技术的发展和工艺制造水平的提高,使人们建造大型精密的望远镜成为了可能。天文观测水平相应大幅提高,天文学家发现水星近日点运动中存在牛顿力学无法解释的部分。电磁现象的研究也使经典物理学的绝对时空观遇到了前所未有的困难。时代造就了天才的爱因斯坦,他提出的狭义相对论和广义相对论,对20世纪人类科学的飞速发展产生了深远影响,同时也为解决太阳和恒星能源之谜、追溯宇宙起源和演化等20世纪天文学的重大成就,奠定了坚实的理论基础。
19世纪末20世纪初,天文学还得到了两个革命性的工具,一个是光谱学,通过分析天体的光谱人们就可以知道它的物理性质、化学组成和运动速度。另一个是照相术,它比目测更具积累性和客观性。1920年代,埃德温·哈勃正是借助这两种工具,从威尔逊山的2.5米望远镜中发现,仙女座星云其实是由大量恒星组成的,而且距离远远超过银河系的尺度。人们终于知道银河系外“天外有天”的事橘让实了。
三次飞跃
哈勃为现代宇宙学奠定了观测基础;射电望远镜的发明,为如同被关在黑屋子里窥探外界的人类打开了一扇大窗;而空间望远镜的发射,更激发了无数人对探索宇宙的渴望。
1929年,哈勃在威尔逊山天文台观察了18个星系的光谱,发现都明显向红端移动,说明这些星系都在以极大速度离我们而去,而且星系离我们越远,退行速度越快,这意味着宇宙正在膨胀。哈勃的这一重要发现,为现代宇宙学奠定了观测基础。
哈勃的成就激励了全世界建造更大望远镜的决心,可是一个偶然的发现,改变了人们建造望远镜的思路。
1932年,美国贝尔电话公司的卡尔·央斯基为了要找出无线电长途电话的干扰来源,无意中发现了来自银河系中心的无线电波,天文学家对宇宙无线电波产生了兴趣,可惜不久后爆发了第二次世界大战。科学研究只能暂停下来。
第二次世界大战是人类的劫难,但是战争也促进了军事技术的革新,从而带动了科学的进步。比如英国人为了预警德国飞机的袭击发明了雷达。1942年2月,他们发现雷达信号会受到来自太阳黑子和耀斑的干扰。这样,战后雷达变身为射电望远镜,给天文望远镜的发展带来了第二次飞跃。
在过去几百年中,天文观测仍脱离不了“可见光”的范围。事实上除了可见光之外,宇宙仍存在着各种射线如γ射线、X射线、紫外线、红外线和无线电波如长波、短波及超短波等等。仅无线电可以观测的有效波长区就是可见光的109倍。人们形容用可见光的波长来观测宇宙,就如同被关在黑屋子里的人从门缝看房子外面的一切。射电望远镜的发明,犹如给这间黑屋开了一扇大窗子。它们以类星体、脉冲星、宇宙微波背景、星际分子等一系列卓越的发现,谱写了二战后天文学发展最辉煌的一章。
不过由于地球大气的影响,大部分短波长的紫外线及X射线无法到达地面。为了要观测它们,惟一的办法是到大气层外去。航天技术给望远镜带来了第三次也是最彻底的一次飞跃。
1970年12月美国天文学家贾可尼领导发射了一个名为“自由号”的X射线卫星,随着它和后来的“爱因斯坦天文台”发射升空,数千个新的X射线源被发现,而这些发射X射线的天体中,便包含着宇宙中最神秘的“黑洞”现象。
下一个具里程碑意义的空间望远镜发射于1990年4月25日,由美国宇航局主持建造的巨型空间天文台——口径2.4米、工作波长从紫外到近红外的哈勃空间望远镜,由航天飞机运载升空。它耗资30亿美元,是目前所有天文观测项目中规模最大、投资最多、最受公众注目的一项。尽管由于人为的差错,不得不在1993年12月2日进行了规模浩大的修复工作,但成功修复的哈勃望远镜,性能甚至超过了原先设计的目标。观测结果表明它的分辨率比地面的大型望远镜高出几十倍。
哈勃空间望远镜不仅取得了丰硕的科学研究成果,还以它拍摄的令人称奇的宇宙照片激发了无数人对探索宇宙的渴望。
地面望远镜的发展也在一日千里地进步,为了随时校正镜面的重力和温度变形,镜面背后安装了一排排计算机指挥的传感器。而位于智利的由4台8米望远镜组成的VLT望远镜,甚至在激光星的帮助下,使镜面产生相应形变来补偿大气扰动的影响。这些称为“主动光学”和“自适应光学”的新技术使望远镜的分辨率达到和空间望远镜媲美的水平,使人类的视野能够达到遥远的宇宙边缘。
未来“巨无霸”
现在仍在空间轨道上运转的望远镜,如哈勃、斯必泽、钱德拉等,仍然会不断取得令人惊叹的数据。而未来的太空望远镜,在得到“自适应光学技术(AO)”支撑的时候,将迎来巨无霸时代。
400年来,望远镜的巨大进步不断扩展着我们的视野,引导了人类宇宙概念的革命,推动了科学技术和社会的发展。
21世纪,人类又有了更新更宏伟的望远镜建造计划:
大麦哲伦望远镜(GMT)
由美国的华盛顿卡内基研究所等8个单位与澳大利亚国立大学合作的望远镜计划,由7面8.4米口径反射镜片构成,每一个镜片的大小都与已在使用的大双筒望远镜(LBT)的相同。
当24.5米口径的GMT把所有的光都集中起来时,其光力相当于其前辈、智利拉斯康帕纳斯天文台6.5米口径Walter Baade望远镜和Landon Clay望远镜所能达到聚光力的11倍。使用了自适应光学技术后,其探测暗弱天体的速度要快出130倍。
GMT望远镜最后也将落户于拉斯康帕纳斯,台址海拔2516米,计划2016年落成。
30米望远镜(TMT)
下一个十年的中期,拥有492个巨大组件的30米望远镜(TMT)睁开它的巨眼的时候,它能收集到比10米凯克望远镜强9倍的星光,拍摄的天体星等更要暗上2.5等(也就是10倍),分辨率则要高出3倍。
TMT的主要目标是在近红外波段用前所未有的精度穿透宇宙深处。巨大的薄镜面阵列将巧妙排列以便可以使用自适应光学技术。TMT的分辨率将达到哈勃望远镜的10倍。
该项目由美国加州理工学院和加拿大大学天文研究协会合作,估计总投资约10亿美元。
欧洲超大望远镜(E-ELT)
它巨大的镜面跨度42米,由906块六边形的小镜片组成。它是100多位欧洲南方天文台(ESO)天文学家集体智慧的结晶,估计“开光”要到2017年。
欧空局100米望远镜计划
欧洲空间局计划投资10亿欧元建设口径100米,聚光面积大于6000平方米的世界上最大的光学/红外望远镜。
中国研制中的大型望远镜
目前世界上最大的单口径射电望远镜是美国建造的口径305米阿雷西博望远镜,而中国准备利用贵州天坑建设口径500米,比阿雷西博更大、技术更先进的FAST望远镜。建成后,它将成为世界上规模最大、灵敏度最高的单口径射电望远镜,预计2014年投入使用。
睁开巨眼 坐观星河
相关链接
望远镜的诞生
英语“望远镜”(telescope)一词,由tele和scope两个部分组成,它们分别源自希腊语中的tele(意为“遥远”)和skopein(意为“注视”、“视野”等)。
人类很早就注意到了光的折射现象。一根笔直的棍子斜着插进水里,它仿佛就在空气和水的分界面上弯折了。但事实上,弯折的并不是棍子,而是光。
把玻璃抛光成两面凸起的形状,它就成了一块凸透镜。光线通过凸透镜就会朝中心方向弯折,向焦点或焦点附近会聚。相反,凹透镜则会使通过它的光线往外发散。
1608年,荷兰眼镜商汉斯·利帕希将两块透镜固定在一个金属管子里,制成了最早的望远镜。
1609年,消息传到伽利略那里,他很快就研制出望远镜,并用它开始了对天体的观测。到1609年底或1610年1月初,伽利略先后制造过4架望远镜,都是折射望远镜,物镜是正透镜,目镜是负透镜,成正像,视场小,最后一架物镜有效口径3.8cm,焦距169cm,30倍。从1609年到1611年间,伽利略用这些望远镜先后发现了月面是粗糙的且有山和谷、木星有4颗卫星、银河中有许多星星、金星有盈亏、太阳有黑子等,开创了天文学研究的新时代。
相关链接
月基望远镜
以月球为基地的天文台称为“月基天文台”,安装在那里的望远镜则称为“月基望远镜”。
月球表面没有大气,那里处于超真空状态。在地球上进行天文观测时地球大气层造成的一切干扰,对于月基望远镜已然不复存在。
月球如地球一样,对天文望远镜而言,是一个巨大、稳定、而且极其坚固的“平台”,它面临的技术问题要比处于失重状态下的空间望远镜简单得多,造价亦远为低廉。
月球上绝对无风,这对建造巨型设备也更加有利。月球上没有像地壳那样的板块运动,月球的内核也已经凝结成固态。因此,月球上“月震”活动的强度仅约为地球上地震活动的亿分之一。那里对于天文观测十分安全,尤其适宜建立基线长达几十千米甚至几百千米的光学、红外和射电干涉系统。
地球每24小时自转一周,造成了天体东升西落的周日运动,所以通常很难长时间地跟踪观测同一个天体。月球大约每27天才自转一周,月球上每个白昼或黑夜差不多都有地球上的两个星期那么长,因而在那里持续跟踪观测一个目标可以长达300多个小时。而且,月球上没有大气,太阳光不会遭到散射,所以纵然烈日当空,照样还是繁星满天,依然可以用光学望远镜观测天体。
当然,月基望远镜的优越性还远远不止于此。如今,要把望远镜送上月球,在技术上并没有不可逾越的障碍。在未来的岁月中,随着月球资源开发利用水平的不断提高,月基实验室和月基工厂将会越来越多。迟早会有一天,人们将能在月球上就地取材,利用月球本身的资源来兴建月基望远镜和月基天文台。
21世纪伊始,欧洲天文学家们就曾构想如何建造口径大到100米的光学天文望远镜。这架设想中的望远镜英文名缩写为OWL,而英语单词owl的原意为“猫头鹰”。将来,人类如果能在月球上就地取材,造出一大群“月基猫头鹰”来,它们为揭示宇宙奥秘作出的贡献,必将比自从伽利略时代以来人类业已兴建的所有望远镜更加宏伟,更加辉煌!
北极星的英文是个什么?
北极星——Pole Star
重点词汇pole
发音:英 [pəʊl] ;美 [poʊl]
翻译:
n.
竿; 杆; 支杆粗游; 极; 地极; 地极区域; 跑道内圈; 主导地位; (Pole)波兰人; 波兰人后裔
v.
用篙撑
短语
latitude by pole star 北极星高度求纬羡凳核度
azimuth by pole star 北极星求方位
pole-star recorder 极星记录器 ; 北极星记云器
双语例句
The Pole Star appears to be changing from a star that pulsates.
北极星似乎由一颗脉动的恒星衍变而来。
The seekers guided by the pole star.
被北极星引导的寻找者。
This is also the reason why every few thousand years, we get a new pole star.
而这兄掘也是为什么每隔几千年我们看到一颗新的北极星的原因。
谁有关于宇宙的资料啊```急用!!!!!!!!!!!!!!!!!!!
“宇宙到底是什么样子?”目前尚无定论。值得一提的是史蒂芬·霍金的观点比较让人容易接受:宇宙有限而无界,只不过比地球多了几维。比如,我们的地球就是有限而无界闷圆的。在地球上,无论从南极走到北极,还是从北极走到南极,戚慎你始终不可能找到地球的边界,但你不能由此认为地球是无限的。实际上,我们都知道地球是有限的。地球如此,宇宙亦是如此。
怎么理解宇宙比地球多了几维呢?举个例子:一个小球沿地面滚动并掉进了一个小洞中,在我们看来,小球是存在的,它还在洞里面,因为我们人类是“三维”的;而对于一个动物来说,它得出的结论就会是:小球已经不存在了!它消失了。为什么会得出这样的结论呢?因为它生活在“二维”世界里,对“三维”事件是无法清楚理解的。同样的道理蚂仔塌,我们人类生活在“三维”世界里,对于比我们多几维的宇宙,也是很难理解清楚的。这也正是对于“宇宙是什么样子”这个问题无法解释清楚的原因。
1、均匀的宇宙
长期以来,人们相信地球是宇宙的中心。哥白尼把这个观点颠倒了过来,他认为太阳才是宇宙的中心。地球和其他行星都围绕着太阳转动,恒星则镶嵌在天球的最外层上。布鲁诺进一步认为,宇宙没有中心,恒星都是遥远的太阳。
无论是托勒密的地心说还是哥白尼的日心说,都认为宇宙是有限的。教会支持宇宙有限的论点。但是,布鲁诺居然敢说宇宙.是无限的,从而挑起了宇宙究竟有限还是无限的长期论战。这场论战并没有因为教会烧死布鲁诺而停止下来。主张宇宙有限的人说:“宇宙怎么可能是无限的呢?”这个问题确实不容易说清楚。主张宇宙无限的人则反问:“宇宙怎么可能是有限的呢?”这个问题同样也不好回答。
随着天文观测技术的发展,人们看到,确实像布鲁诺所说的那样,恒星是遥远的太阳。人们还进一步认识到,银河是由无数个太阳系组成的大星系,我们的太阳系处在银河系的边缘,围绕着银河系的中心旋转,转速大约每秒250千米,围绕银心转一圈约需2.5亿年。太阳系的直径充其量约1光年,而银河系的直径则高达10万光年。银河系由1000多亿颗恒星组成,太阳系在银河系中的地位,真像一粒砂子处在北京城中。后来又发现,我们的银河系还与其他银河系组成更大的星系团,星系团的直径约为107光年(1000万光年)。目前,望远镜观测距离已达100亿光年以上,在所见的范围内,有无数的星系团存在,这些星系团不再组成更大的团,而是均匀各向同性地分布着。这就是说,在10的7次方光年的尺度以下,物质是成团分布的。卫星绕着行星转动,行星、彗星则绕着恒星转动,形成一个个太阳系。这些太阳系分别由一个、两个、三个或更多个太阳以及它们的行星组成。有两个太阳的称为双星系,有三个以上太阳的称为聚星系。成千亿个太阳系聚集在一起,形成银河系,组成银河系的恒星(太阳系)都围绕着共同的重心——银心转动。无数的银河系组成星系团,团中的各银河系同样也围绕它们共同的重心转动。但是,星系团之间,不再有成团结构。各个星系团均匀地分布着,无规则地运动着。从我们地球上往四面八方看,情况都差不多。粗略地说,星系固有点像容器中的气体分子,均匀分布着,做着无规则运动。这就是说,在10的8次方光年(一亿光年)的尺度以上,宇宙中物质的分布不再是成团的,而是均匀分布的。由于光的传播需要时间,我们看到的距离我们一亿光年的星系,实际上是那个星系一亿年以前的样子。所以,我们用望远镜看到的,不仅是空间距离遥远的星系,而且是它们的过去。从望远镜看来,不管多远距离的星系团,都均匀各向同性地分布着。
因而我们可以认为,宇观尺度上(10的5次方光年以上)物质分布的均匀状态,不是现在才有的,而是早已如此。
于是,天体物理学家提出一条规律,即所谓宇宙学原理。这条原理说,在宇观尺度上,三维空间在任何时刻都是均匀各向同性的。现在看来,宇宙学原理是对的。所有的星系都差不多,都有相似的演化历程。因此我们用望远镜看到的遥远星系,既是它们过去的形象,也是我们星系过去的形象。望远镜不仅在看空间,而且在看时间,在看我们的历史。
2、有限而无边的宇宙
爱因斯坦发表广义相对论后,考虑到万有引力比电磁力弱得多,不可能在分子、原子、原子核等研究中产生重要的影响,因而他把注意力放在了天体物理上。他认为,宇宙才是广义相对论大有用武之地的领域。
爱因斯坦1915年发表广义相对论,1917年就提出一个建立在广义相对论基础上的宇宙模型。这是一个人们完全意想不到的模型。在这个模型中,宇宙的三维空间是有限无边的,而且不随时间变化。以往人们认为,有限就是有边,无限就是无边。爱因斯坦把有限和有边这两个概念区分开来。
一个长方形的桌面,有确定的长和宽,也有确定的面积,因而大小是有限的。同时它有明显的四条边,因此是有边的。如果有一个小甲虫在它上面爬,无论朝哪个方向爬,都会很快到达桌面的边缘。所以桌面是有限有边的二维空间。如果桌面向四面八方无限伸展,成为欧氏几何中的平面,那么,这个欧氏平面是无限无边的二维空间。
我们再看一个篮球的表面,如果篮球的半径为r,那么球面的面积是4πr的2次方,大小是有限的。但是,这个二维球面是无边的。假如有一个小甲虫在它上面爬,永远也不会走到尽头。所以,篮球面是一个有限无边的二维空间。
按照宇宙学原理,在宇观尺度上,三维空间是均匀各向同性的。爱因斯坦认为,这样的三维空间必定是常曲率空间,也就是说空间各点的弯曲程度应该相同,即应该有相同的曲率。由于有物质存在,四维时空应该是弯曲的。三维空间也应是弯的而不应是平的。爱因斯坦觉得,这样的宇宙很可能是三维超球面。三维超球面不是通常的球体,而是二维球面的推广。通常的球体是有限有边的,体积是4/3πr的3次方,它的边就是二维球面。三维超球面是有限无边的,生活在其中的三维生物(例如我们人类就是有长、宽、高的三维生物),无论朝哪个方向前进均碰不到边。假如它一直朝北走,最终会从南边走回来。
宇宙学原理还认为,三维空间的均匀各向同性是在任何时刻都保持的。爱因斯坦觉得其中最简单阶情况就是静态宇宙,也就是说,不随时间变化的宇宙。这样的宇宙只要在某一时刻均匀各向同性,就永远保持均匀各向同性。
爱因斯坦试图在三维空间均匀各向同性、且不随时间变化的假定下,救解广义相对论的场方程。场方程非常复杂,而且需要知道初始条件(宇宙最初的情况)和边界条件(宇宙边缘处的情况)才能求解。本来,解这样的方程是十分困难的事情,但是爱因斯坦非常聪明,他设想宇宙是有限无边的,没有边自然就不需要边界条件。他又设想宇宙是静态的,现在和过去都一样,初始条件也就不需要了。再加上对称性的限制(要求三维空间均匀各向同性),场方程就变得好解多了。但还是得不出结果。反复思考后,爱因斯坦终于明白了求不出解的原因:广义相对论可以看作万有引力定律的推广,只包含“吸引效应”不包含“排斥效应”。而维持一个不随时间变化的宇宙,必须有排斥效应与吸引效应相平衡才行。这就是说,从广义相对论场方程不可能得出“静态”宇宙。要想得出静态宇宙,必须修改场方程。于是他在方程中增加了一个“排斥项”,叫做宇宙项。这样,爱因斯坦终于计算出了一个静态的、均匀各向同性的、有限无边的宇宙模型。一时间大家非常兴奋,科学终于告诉我们,宇宙是不随时间变化的、是有限无边的。看来,关于宇宙有限还是无限的争论似乎可以画上一个句号了。
3、膨胀或脉动的宇宙
几年之后,一个名不见经传的前苏联数学家弗利德曼,应用不加宇宙项的场方程,得到一个膨胀的、或脉动的宇宙模型。弗利德曼宇宙在三维空间上也是均匀、各向同性的,但是,它不是静态的。这个宇宙模型随时间变化,分三种情况。第一种情况,三维空间的曲率是负的;第二种情况,三维空间的曲率为零,也就是说,三维空间是平直的;第三种情况,三维空间的曲率是正的。前两种情况,宇宙不停地膨胀;第三种情况,宇宙先膨胀,达到一个极大值后开始收缩,然后再膨胀,再收缩……因此第三种宇宙是脉动的。弗利德曼的宇宙最初发表在一个不太著名的杂志上。后来,西欧一些数学家物理学家得到类似的宇宙模型。爱因斯坦得知这类膨胀或脉动的宇宙模型后,十分兴奋。他认为自己的模型不好,应该放弃,弗利德曼模型才是正确的宇宙模型。
同时,爱因斯坦宣称,自己在广义相对论的场方程上加宇宙项是错误的,场方程不应该含有宇宙项,而应该是原来的老样子。但是,宇宙项就像“天方夜谭”中从瓶子里放出的魔鬼,再也收不回去了。后人没有理睬爱因斯坦的意见,继续讨论宇宙项的意义。今天,广义相对论的场方程有两种,一种不含宇宙项,另一种含宇宙项,都在专家们的应用和研究中。
早在1910年前后,天文学家就发现大多数星系的光谱有红移现象,个别星系的光谱还有紫移现象。这些现象可以用多谱勒效应来解释。远离我们而去的光源发出的光,我们收到时会感到其频率降低,波长变长,并出现光谱线红移的现象,即光谱线向长波方向移动的现象。反之,向着我们迎面而来的光源,光谱线会向短波方向移动,出现紫移现象。这种现象与声音的多普勒效应相似。许多人都有过这样的感受:迎面而来的火车其鸣叫声特别尖锐刺耳,远离我们而去的火车其鸣叫声则明显迟钝。这就是声波的多普勒效应,迎面而来的声源发出的声波,我们感到其频率升高,远离我们而去的声源发出的声波,我们则感到其频率降低。
如果认为星系的红移、紫移是多普勒效应,那么大多数星系都在远离我们,只有个别星系向我们靠近。随之进行的研究发现,那些个别向我们靠近的紫移星系,都在我们自己的本星系团中(我们银河系所在的星系团称本星系团)。本星系团中的星系,多数红移,少数紫移;而其他星系团中的星系就全是红移了。
1929年,美国天文学家哈勃总结了当时的一些观测数据,提出一条经验规律,河外星系(即我们银河系之外的其他银河系)的红移大小正比于它们离开我们银河系中心的距离。由于多普勒效应的红移量与光源的速度成正比,所以,上述定律又表述为:河外星系的退行速度与它们离我们的距离成正比:
V=HD
式中V是河外星系的退行速度,D是它们到我们银河系中心的距离。这个定律称为哈勃定律,比例常数H称为哈勃常数。按照哈勃定律,所有的河外星系都在远离我们,而且,离我们越远的河外星系,逃离得越快。
哈勃定律反映的规律与宇宙膨胀理论正好相符。个别星系的紫移可以这样解释,本星系团内部各星系要围绕它们的共同重心转动,因此总会有少数星系在一定时间内向我们的银河系靠近。这种紫移现象与整体的宇宙膨胀无关。
哈勃定律大大支持了弗利德曼的宇宙模型。不过,如果查看一下当年哈勃得出定律时所用的数据图,人们会感到惊讶。在距离与红移量的关系图中,哈勃标出的点并不集中在一条直线附近,而是比较分散的。哈勃怎么敢于断定这些点应该描绘成一条直线呢?一个可能的答案是,哈勃抓住了规律的本质,抛开了细节。另一个可能是,哈勃已经知道当时的宇宙膨胀理论,所以大胆认为自己的观测与该理论一致。以后的观测数据越来越精,数据图中的点也越来越集中在直线附近,哈勃定律终于被大量实验观测所确认。
4、宇宙有限还是无限
现在,我们又回到前面的话题,宇宙到底有限还是无限?有边还是无边?对此,我们从广义相对论、大爆炸宇宙模型和天文观测的角度来探讨这一问题。
满足宇宙学原理(三维空间均匀各向同性)的宇宙,肯定是无边的。但是否有限,却要分三种情况来讨论。
如果三维空间的曲率是正的,那么宇宙将是有限无边的。不过,它不同于爱因斯坦的有限无边的静态宇宙,这个宇宙是动态的,将随时间变化,不断地脉动,不可能静止。这个宇宙从空间体积无限小的奇点开始爆炸、膨胀。此奇点的物质密度无限大、温度无限高、空间曲率无限大、四维时空曲率也无限大。在膨胀过程中宇宙的温度逐渐降低,物质密度、空间曲率和时空曲率都逐渐减小。体积膨胀到一个最大值后,将转为收缩。在收缩过程中,温度重新升高、物质密度、空间曲率和时空曲率逐渐增大,最后到达一个新奇点。许多人认为,这个宇宙在到达新奇点之后将重新开始膨胀。显然,这个宇宙的体积是有限的,这是一个脉动的、有限无边的宇宙。
如果三维空间的曲率为零,也就是说,三维空间是平直的(宇宙中有物质存在,四维时空是弯曲的),那么这个宇宙一开始就具有无限大的三维体积,这个初始的无限大三维体积是奇异的(即“无穷大”的奇点)。大爆炸就从这个“无穷大”奇点开始,爆炸不是发生在初始三维空间中的某一点,而是发生在初始三维空间的每一点。即大爆炸发生在整个“无穷大”奇点上。这个“无穷大”奇点。温度无限高、密度无限大、时空曲率也无限大(三维空间曲率为零)。爆炸发生后,整个“奇点”开始膨胀,成为正常的非奇异时空,温度、密度和时空曲率都逐渐降低。这个过程将永远地进行下去。这是一种不大容易理解的图像:一个无穷大的体积在不断地膨胀。显然,这种宇宙是无限的,它是一个无限无边的宇宙。
三维空间曲率为负的情况与三维空间曲率为零的情况比较相似。宇宙一开始就有无穷大的三维体积,这个初始体积也是奇异的,即三维“无穷大”奇点。它的温度、密度无限高,三维、四维曲率都无限大。大爆炸发生在整个“奇点”上,爆炸后,无限大的三维体积将永远膨胀下去,温度、密度和曲率都将逐渐降下来。这也是一个无限的宇宙,确切地说是无限无边的宇宙。
那么,我们的宇宙到底属于上述三种情况的哪一种呢?我们宇宙的空间曲率到底为正,为负,还是为零呢?这个问题要由观测来决定。
广义相对论的研究表明,宇宙中的物质存在一个临界密度ρc,大约是每立方米三个核子(质子或中子)。如果我们宇宙中物质的密度ρ大于ρc,则三维空间曲率为正,宇宙是有限无边的;如果ρ小于ρc,则三维空间曲率为负,宇宙也是无限无边的。因此,观测宇宙中物质的平均密度,可以判定我们的宇宙究竟属于哪一种,究竞有限还是无限。
此外,还有另一个判据,那就是减速因子。河外星系的红移,反映的膨胀是减速膨胀,也就是说,河外星系远离我们的速度在不断减小。从减速的快慢,也可以判定宇宙的类型。如果减速因子q大于1/2,三维空间曲率将是正的,宇宙膨胀到一定程度将收缩;如果q等于1/2,三维空间曲率为零,宇宙将永远膨胀下去;如果q小于1/2,三维空间曲率将是负的,宇宙也将永远膨胀下去。
表3列出了有关的情况:
表3
宇宙中物质密度 红移的减速因子 三维空间曲率 宇宙类型 膨胀特点
ρ>ρc q>1/2 正 有限无边 脉动
ρ=ρc q=1/2 零 无限无边 永远膨胀
ρ<ρc q<1/2 负 无限无边 永远膨胀
我们有了两个判据,可以决定我们的宇宙究竟属于哪一种了。观测结果表明,ρ<ρc,我们宇宙的空间曲率为负,是无限无边的宇宙,将永远膨胀下去!不幸的是,减速因子观测给出了相反的结果,q>1/2,这表明我们宇宙的空间曲率为正,宇宙是有限无边的,脉动的,膨胀到一定程度会收缩回来。哪一种结论正确呢?有些人倾向于认为减速因子的观测更可靠,推测宇宙中可能有某些暗物质被忽略了,如果找到这些暗物质,就会发现ρ实际上是大于ρc的。另一些人则持相反的看法。还有一些人认为,两种观测方式虽然结论相反,但得到的空间曲率都与零相差不大,可能宇宙的空间曲率就是零。然而,要统一大家的认识,还需要进一步的实验观测和理论推敲。今天,我们仍然肯定不了宇宙究竟有限还是无限,只能肯定宇宙无边,而且现在正在膨胀!此外,还知道膨胀大约开始于100亿-200亿年以前,这就是说,我们的宇宙大约起源于100亿-200亿年之前。
5、爱因斯坦宇宙模型
根据物理理论,在一定的假设前提下提出的关于宇宙的设想与推测,称为宇宙模型。
著名科学家爱因斯坦于1915年建立了广义相对论的物理理论。这一理论认为,宇宙中没有绝对空间和绝对时间,无论是空间和时间都不能与物质隔开来,空间和时间均受物质影响;引力是空间弯曲的效应,而空间弯曲是由物质存在决定的。爱因斯坦将他的理论应用于宇宙研究,1917年发表了《根据广义相对论的宇宙学考察》的论文,他将广义相对论的引力场方程用于整个宇宙,建立起一种宇宙模型。
当时科学家普遍认为宇宙是静止的,不随时间变化的。虽然在几年前,美国天文学家斯里弗已发现了河外星系的谱线红移(显然这是对静止宇宙的挑战),但由于当时正值第一次世界大战,这一消息并没有传到欧洲。因此,爱因斯坦也和大多数科学家一样,认为宇宙是静态的。爱因斯坦想从引力场方程着手,得出一个宇宙是静态的、均匀的、各向同性的答案。但他得到的解是不稳定的,表明全间和距离不是恒定不变的,而是随时变化的。为了得到一个空间是稳定的解,爱因斯坦人为地在引力场方程中引入一个叫做“宇宙常数”的项,让它起斥力的作用。爱因斯坦得出一个有限无边的静态宇宙模型,称为爱因斯坦宇宙模型。为了便于理解,可把它比喻为三维空间中的一个二维球面:球面的面积是有限的、但沿着球面没有边界,也无中心,球面保持静态状态。几年以后,爱因斯坦得知河外星系退行,宇宙是膨胀的消息后,非常后悔在自己的模型中加了一个宇宙常数项,称这是他一生中犯的最大错误。
最新发现:银河系奇异恒星的伴星现身
科学家利用NASA的远紫外谱仪探索卫星首次探测到船底座伊塔星(Eta Carinae)的伴星。船底座伊塔星是银河系中最重最奇异的星体,座落在离地球7500光年船底座,在南半球用肉眼就可以清楚的看到。科学家认为船底座伊塔星是一个正迅速走向衰亡的不稳定恒星。
长期以来,科学家们就推断它应该存在着一颗伴星,但是一直得不到直接的证据。间接的证据来自其亮度呈现的规则变化。科学家发现船底座伊塔星在可见光,X-射线,射电波和红外线波段的亮度都呈现规则的重覆模式,因此推测它可能是一个双星系统。最有力的证据是每过5年半,船底座伊塔星系统发出的X-射线就会消失约三个月时间。科学家认为船底座伊塔星温度太低,本身并不能发出X-射线,但是它以每秒300英里的速度向外喷发气体粒子,这些气体粒子和伴星发出的粒子相互碰撞后发出X-射线。科学家认为X-射线消失的原因是船底座伊塔星每隔5年半就挡住了这些X-射线。最近一次X-射线消失开始于2003年6月29日。
科学家推断船底座伊塔星和其伴星的距离是地球到太阳之间的距离的10倍,因为它们距离太近,离地球又太远,无法用望远镜直接将它们区分开。另外一种方法就是直接观测伴星所发出的光。但是船底座伊塔星的伴星比其本身要暗的多,以前科学家曾经试图用地面望远镜和哈勃望远镜观测,但都没有成功。
美国天主教大学的科学家罗辛纳. 而平(Rosina Iping)及其合作者利用远紫外谱仪卫星来观测这颗伴星,因为它比哈勃望远镜能观测到波长更短的紫外线。它们在6月10日,17日观测到了远紫外线,但是在6月27日,也就是在X-射线消失前的两天远紫外线消失了。观测到的远紫外线来自船底座伊塔星的伴星,因为船底座伊塔星温度太低,本身不会发出远紫外线。这意味着船底座伊塔星挡住了X-射线的同时也挡住了伴星。这是科学家首次观测到船底座伊塔星的伴星发出的光,从而证实了这颗伴星的存在。
有三个太阳的恒星
据新华社14日电 据14日出版的《自然》杂志报道,美国天文学家在距离地球149光年的地方发现了一个具有三颗恒星的奇特星系,在这个星系内的行星上,能看到天空中有三个太阳。
美国加州理工学院的天文学家在该杂志上报告说,他们发现天鹅星座中的HD188753星系中有3颗恒星。处于该星系中心的一颗恒星与太阳系中的太阳类似,它旁边的行星体积至少比木星大14%。该行星与中心恒星的距离大约为800万公里,是太阳和地球之间距离的二十分之一。而星系的另外两颗恒星处于外围,它们彼此相距不远,也围绕中心恒星公转。
银河系中的星系多为单星系或双星系,具有三颗以上恒星的星系被称为聚星系,不太多见。
恒星并不是平均分布在宇宙之中,多数的恒星会受彼此的引力影响,形成聚星系统,如双星、三恒星,甚至形成星团,及星系等由数以亿计的恒星组成的恒星集团。
天文学家发现宇宙中生命诞生是普遍的现象
近日美国宇航局寻找地球以外生命物质存在证据的科研小组研究发现,某些在实际生命化学反应中起到至关重要作用的有机化学物质,普遍存在于我们地球以外的浩瀚宇宙中。研究结果表明,在宇宙深处存在生命物质、或者有孕育生命物质的化学反应发生,这在浩瀚的宇宙中是一种普遍现象。
上述研究来自“美国宇航局艾姆斯研究中心(NASA Ames Research Center)”的一个外空生物科研小组。在该小组工作的科学家道格拉斯-希金斯介绍时称:“根据科研小组最新的研究结果显示,一类在生物生命化学中起至关重要作用的化合物,在广袤的宇宙空间中广泛而且大量地存在着。” 作为该外空生物学研究小组的主要成员之一,道格拉斯-希金斯以第一作者的身份将他们的最新研究成果撰文发表在10月10日出版的《天体物理学》杂志上。
希金斯在描述其研究结果时介绍:“利用美国宇航局斯皮策太空望远镜(Spitzer space Telescope)最近的观测结果,天文学家在我们所居住的银河系内,到处都发现了一种复杂有机物‘多环芳烃’(PAHs)存在的证据。但是这项发现一开始只得到天文学家的重视,并没有引起对外空生物进行研究的天体生物学家们的兴趣。因为对于生物学而言,普通的多环芳烃物质存在并不能说明什么实质问题。但是,我们的研究小组在最近一项分析结果中却惊喜的发现,宇宙中看到的这些多环芳烃物质,其分子结构中含有‘氮’元素(N)的成分,这一意外发现使我们的研究发生了戏剧性改变。”
该研究小组的另一成员,来自美国宇航局艾姆斯研究中心的天体生物学家路易斯-埃兰曼德拉说:“包括DNA分子在内,对于大多数构成生命的化学物质而言,含氮的有机分子参与是必须的条件。举一个含氮有机物质在生命物质意义上最典型的例子,象我们所熟悉的叶绿素,其对于植物的光合作用起着关键作用,而叶绿素分子中富含这种含氮多环芳烃(PANHs)成分。”
据介绍,在科研小组的研究工作中,除了利用来自斯皮策望远镜得到的观测数据外,科研人员还使用了欧洲宇航局太空红外天文观测卫星的观测数据。在美国宇航局艾姆斯研究中心的实验室中,研究人员对这类特殊的多环芳烃,利用红外光谱化学鉴定技术对其分子结构和化学成分进行了全面分析,找到其中氮元素存在的证据。同时科学家利用计算机技术对这些宇宙中普遍存在的含氮多环芳烃,进行了红外射线光谱模拟分析。
路易斯-埃兰曼德拉同时还表示:“除去上述分析结论以外,更加富有戏剧性的发现是,在斯皮策太空望远镜的观测中还显示出,在宇宙中一些即将死亡的恒星天体周围,环绕其外的众多星际物质中,都大量蕴藏着这种特殊的含氮多环芳烃成分。这一发现从某种意义上似乎也告诉我们,在浩瀚的宇宙星空中,即使在死亡来临的时候,同时也孕育着新生命开始的火种。”
本年度最大科学突破:宇宙正膨胀 发现暗能量
通过分析星系团(图中左侧的点),斯隆数字天空观测计划天文学家确定,暗能量正在驱动着宇宙不断地膨胀。
据英国《卫报》报道,证实宇宙正在膨胀是本年度最重大的科学突破。
报道说,近73%的宇宙由神秘的暗能量组成,它是一种反重力。在19日出版的美国《科学》杂志上,暗能量的发现被评为本年度最重大的科学突破。通过望远镜,人类在宇宙中已经发现近2000亿个星系,每一个星系中又有约2000亿颗星球。但所有这些加起来仅占整个宇宙的4%。
现在,在新的太空探索基础上,以及通过对100万个星系进行仔细研究,天文学家们至少已经弄清了部分情况。约23%的宇宙物质是“暗物质”。没有人知道它们究竟是什么,因为它们无法被检测到,但它们的质量大大超过了可见宇宙的总和。而近73%的宇宙是最新发现的暗能量。这种奇特的力量似乎正在使宇宙加速膨胀。英国皇家天文学家马丁·里斯爵士将这一发现称为“最重要的发现”。
这一发现是绕轨道运行的威尔金森微波各向异性探测器(WMAP)和斯隆数字天文台(SDSS)的成果。它解决了关于宇宙的年龄、膨胀的速度及组成宇宙的成分等一系列问题的长期争论。天文学家现在相信宇宙的年龄是137亿年